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ABSTRACT 
 

Seismic analysis of structures is a process for estimating the response of structures subjected 

to earthquakes. For this purpose, the earthquake is analyzed using the wavelet theory. In this 

paper, the primary signal of the earthquake is decomposed through a discrete wavelet 

transform, and their corresponding response spectrum is obtained. Then, the percentage 

difference between the decomposed signals and the main one is computed. Therefore, for 

different earthquakes, a comparison between the response spectrum is studied in various 

types of dams. The acceleration, velocity, and displacement responses are computed and 

compared to achieve an appropriate level of decomposition, which can be used instead of the 

primary signal. Therefore, the decomposition process leads to attaining acceptable accuracy 

as well as low computational cost. The investigation revealed that the acceleration, velocity, 

and displacement responses spectrum are suitable up to the third level of decomposition for 

the small and medium dams, whereas for large dams, up to the fifth level of decomposition 

is suitable. 
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1. INTRODUCTION 
 

Structures are subjected to time-varying seismic forces during an earthquake, producing 

time-dependent displacements and internal stresses. Seismic analysis techniques can 

calculate the Strong Ground Motion parameters (SGMs) and the response spectrum. The 

static analysis method should not be used for the ultimate design of any structures. In 

contrast, earthquake loading is the governing case, particularly for regions with a high 
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probability of severe earthquakes (e.g., soils type III and IV). This fact can be held for 

irregular structures. Besides, the time history analysis should be used in retrofitting 

structures against earthquakes and for seismic damaged-based design. Therefore, the 

response parameters are used to control structural damage in the performance-based seismic 

design of structures. Some important parameters are base shear, story drift, spectral 

acceleration, spectral displacement, and story displacement [1]. Also, the Peak Ground 

Acceleration (PGA), Peak Ground Velocity (PGV), and peak ground displacement (PGD) 

are the ground motion amplitude characteristics that can be obtained from the 

accelerograms.  

The importance of PGA is related to the development of seismic zoning maps and the 

construction of the design Response Spectrum (RS), which is used in earthquake-resistant 

construction rules [2]. Effective PGAs are needed in the early stages of project development 

since they can be used as a starting point for preliminary seismic designs and evaluations 

[3]. The PGA is used in the regression analysis model to determine the intensity of an 

earthquake [4]. The PGV plays a vital role in the problem of velocity RS to produce a family 

of curves called maximum relative velocity RS [5]. PGV has been widely used in risk 

analysis and performance-based design in sensitive seismic zones [6]. PGD has been 

commonly employed to predict and formulate the ground-motion prediction equation for a 

considered region [7]. PGD is one of the factors governing the seismic demand in the time 

history analysis, performance-based seismic design [8], the displacement hazard analysis 

[9], development of the structural collapse prediction models [10], and the earthquake 

resistant design of structures [11]. For some non-stationary time-series signals, the low 

Signal to the Noise Ratio (SNR) values are entirely covered by seismic noise. 

Moreover, the low and high-frequency noises often exist in the accelerograms and affect 

the properties of the SGM parameters. As noises affect the parameters of SGM, the 

appropriate processing should be applied to the accelerograms before using it. Accordingly, 

denoising is a significant component of earthquake engineering and seismic hazard studies 

[12]. Frequency processing of accelerograms is an advanced technique for filtering seismic 

noise [13]. The ground acceleration value needs to be transformed into a frequency domain 

to remove the noise using the frequency filtering technique. The low-frequency signals 

travel longer distances and transmit to an even more profound zone of the earth’s 

subsurface. 

Moreover, the high-frequency signals are often represented by short wiggles and can be 

reconstructed through data denoising. Fourier Transform (FT) is widely used to process 

accelerogram when the signal is considered stationary. However, as the accelerograms are 

highly non-stationary, wavelet processing came to researchers' attention. The Fourier 

transform is considered as a starting point. It also is an alternative representation of a signal 

in the frequency domain. 

On the other hand, the Wavelet Transform (WT) is the best representation for the signal 

analysis in the time and frequency domain [14, 15]. There are different WTs, such as 

Discrete Wavelet Transform (DWT) [16-18] and Continuous Wavelet Transform (CWT) 

[19]. WT decomposes the accelerogram in various frequency levels and analyzes the signal 

based on time-scale transformation [20]. Therefore, decomposing an accelerogram using 

WT will clearly distinguish the noise and signal characteristics. Wavelet analysis enables 

one to represent a function in terms of a set of fundamental functions called mother wavelets 
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(Symlet, Coiflet, Debeuches, Haar, etc.), localized in both time and space. WT-based 

processing has been used to reach the optimal design of structures subjected to earthquake 

loadings [20]. Heidari et al. used WT to estimate the parameters of SGM based on the 

decomposition of the primary signal [21, 22].  

This paper uses the DWT to obtain an appropriate decomposition level for the time 

history analysis of dam structures. Inhere, three different types of dams are considered, and 

the spectral dynamic analysis is applied to reach the optimum level of decomposition. It 

should be noted that there are different optimization methods used in engineering problems 

[23-26]. These methods can find optimal solutions for engineering problems. Researchers 

combined the wavelet transform with optimization algorithms to find the optimal solutions 

for engineering problems [27-29]. 

 

 

2. WAVELET TRANSFORM 
 

In the following section, two types of WT (DWT and CWT) are discussed. 

 

2.1 Continuous wavelet transform 

Any oscillating function with zero mean can be a mother wavelet. The wavelet transform of 

𝑓 ∈ 𝐿2(𝑅) at time u and scale s is a convolution of the mother function 𝜓 ∈ 𝐿2(𝑅) with the 

function𝑓 ∈ 𝐿2(𝑅): 
 

𝑊𝑓(𝑢, 𝑠) = ∫ 𝑓(𝑡)
∞

−∞

(
1

√𝑠
) 𝜓∗ (

𝑡 − 𝑢

𝑠
) 𝑑𝑡 = 𝑓 ∗ 𝜓𝑠

̅̅ ̅ (𝑢) (1) 

 

By applying the Parseval formula, Eq. (1) can also be written as: 
 

𝑊𝑓(𝑢, 𝑠) = ∫ 𝑓(𝑡)
∞

−∞

𝜓𝑢,𝑠
∗(𝑡)𝑑𝑡 =

1

2𝜋
∫ 𝑓

∞

−∞

(𝜔)𝜓𝑢,𝑠
̂ ∗

(𝜔)𝑑𝜔 (2) 

 

where, Wf(u,s) is the wavelet coefficients, f(t) is the signal function, f ( ) is the signal 

spectrum. The wavelet coefficients are determined by the signal and its spectrum in the time-

frequency region, where the energy of 𝜓
𝑢,𝑠

̂ ∗
 and 𝜓

𝑢,𝑠
∗
  is concentrated. Since it has a zero 

average, a wavelet coefficient 𝑊𝑓(𝑢, 𝑠) measures the variation of f in the adjacent of u, which 

its size is proportional to s. U transmission parameter is related to the location of the wavelet 

function as it is shifted along with the signal. In contrast, the scale parameter of s is defined as 

the inverse of frequency. The main CWT drawback is its performance in computing for both 

scale and translation, which turns this transform into a redundant one. Therefore, a 

discretization of the scale and translation variables was introduced. 

 

2.2 Discrete wavelet transform 

The discretization of CWT leads to the Discrete Wavelet Transform in the time-frequency 

plane, which contributes to decomposing discrete-time signals. The following result at each 
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decomposition level consists of two coefficients: approximate coefficients and detail 

coefficients. The former coefficients are obtained by low-pass filtering of the input sequence, 

followed by down-sampling. The latter ones are obtained by high-pass filtering of the input 

sequence, followed by down-sampling. The sequence of coefficients approximation provides 

the input for the next iteration. Each decomposition level corresponds to a specific resolution. 

The Discrete Wavelet Transform has two main features: the wavelet mother 𝝍 and the 

number of decomposition levels. Discrete wavelets can be scaled and translated into distinct 

steps, which its representation shows in the following: 
 

𝜓𝑗,𝑛 =
1

√2𝑗
(

𝑡 − 2𝑗𝑛

2𝑗
) (3) 

 

where j is the scale factor, and n is the translation index. 

Classical DWT is not shift-invariant, meaning that the DWT of a translated version of the 

signal is not the same as the identical translation of DWT of the original one. 

The Stationary Wavelet Transform overcomes the absence of translation invariance of the 

DWT. The SWT, also known as the Undecimated Discrete Wavelet Transform, is a time-

redundant version of standard DWT. 

Unlike the DWT, which down-samples the approximation coefficients and detail 

coefficients at each decomposition level, no down-sampling is performed in the case of 

SWT. This difference means that the approximation coefficients and the detailed one at each 

level have the same length as the initial signal. Therefore an increased number of 

coefficients is determined at each scale leading to more accurate localization of signal 

features, whereas the filters are up-sampled at each level.  

The SWT has the translation-invariance or shift-invariance feature. Therefore, the SWT 

provides a more significant amount of information about the transformed signal when 

compared to DWT. A more substantial amount of data is essential when statistical methods 

are used for analyzing the wavelet coefficients. The shift-invariant property is vital in 

feature-extraction applications, denoising, as well as detection. The SWT can be 

implemented using the Shensa algorithm. 

 

2.3 Stationary wavelet transform 

Another way to perform a multiresolution analysis is using the Shensa algorithm, which 

corresponds to the computation of Stationary Wavelet Transform. The decomposition tree is 

represented in Fig. 1. 
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Figure 1. Systems for the Stationary Wavelet Transform (SWT) 

 

In this case, dampers are avoided, but different low-pass filters (ℎ𝑑1
, ℎ𝑑2

, ℎ𝑑3
) and high-

pass ones (𝑔𝑑1
, 𝑔𝑑2

, 𝑔𝑑3
) are used at each iteration. Each level filters are up-sampled versions 
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of previous ones. 

Therefore the differences between SWT and DWT are that the signal is never down-

sampled, while the filters are up-sampled at each level in the case of SWT. The SWT is a 

translation-invariant because all the filters composting scheme is linear time-invariant 

systems (see Fig. 1). 

 

3. MODELING PROCEDURE 
 

The fundamental period is a common criterion describing the behavior of building subjected 

to seismic loads. So, it is used to determine the requirements of a structure due to a given 

seismic input. First of all, the fundamental period of the small, medium, and large dams 

should be defined, respectively. Then, the response spectrum of the main earthquake is 

compared with the decomposed levels in the desired range. 

Dams are classified into three types of small, medium, and large dams based on height 

and capability (see Table 1). 

 
Table 1: Classification of dams 

Type Maximum capability (m3) Height (m) 

Small 61674 to 1.233×106 7.62 to 12.192 

Median 1.233×106 <cap< 61674000 12.192<h<30.48 

Large >61674000 >30.48 

 

For calculating the fundamental period of dams, based on ASCE7-10 [30], the following 

formula is used: 

 

𝑇𝑎 = 0.0488(ℎ𝑛)0.75
 (1) 

 

where 𝒉𝒏 shows the structure height from ground level, and 𝑻𝒂 presents the fundamental 

period of the structure. Table 2 shows the period range of the dam resulting from Table 1 

and Eqs. (1-4). 

 
Table 2: The period range of dams 

Dam Type Period (Sec) 

Small 0.22-0.318 

Median 0.318-0.633 

Large >0.633 

 

In this section, the earthquakes are decomposed with DWT, and then, the difference of 

the primary earthquake response spectrum is compared with decomposed levels ones. 

 

 

4. RESULTS 
 

In this section, earthquake data is decomposed into five levels by DWT. Each decomposition 
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level has two parts, namely a Detailed coefficient and an Approximate coefficient, which 

result from high-pass filters and low-pass filters, respectively. The approximate coefficient 

is the base of comparing features with the main signal because it has a similar length and 

property to the main one. Earthquake properties are extracted from SeismoSignal software 

based on acceleration, velocity, and displacement. SeismoSignal can compute Strong 

Ground Motion Parameres based on various damping ratios. Here, the linear response 

spectrum is considered. The reason for transferring data from SeismoSignal into Matlab is 

that the former software analyzes the data based on Fourier Transform. In contrast, the latter 

is used to analyze the data based on Wavelet transform.  

In this paper, the damping ratio is considered to be equal to 5%. The selected earthquake 

is "ElCentro," which occurred on the United States and Mexico border in 1940. 

The decomposition process continued up to the fifth level. It yielded results in the form 

of graphs such as acceleration-period, velocity-period, displacement-period, acceleration-

frequency, velocity-frequency, and displacement-frequency, which has been compared with 

the initial signal at %5 damping ratio. 

 

4.1 Acceleration-period  

Fig. 2 shows the acceleration-period comparison of 5 levels of response spectrum 

decomposition with the original one. The X-axis shows the period(second) of the 

earthquake, and the Y-axis shows the acceleration (m/sec2) of the response spectrum. 

Table 2 is used to categorize the dam. Also, the R1, R2, R3, R4, and R5 show level one 

to five response spectrum. 

Fig. 2 demonstrates the acceleration differences of the decomposed response spectrum 

with the main one in three types of the small, medium, and large dams, respectively. As the 

graph shows, the first three levels of decomposition can replace the primary response 

spectrum. This is because of the slight and acceptable difference between the results in small 

and medium dams. This conclusion can be a bit different for large dams. The fifth level can 

not be suitable for optimizing due to its relatively considerable disparity. On the other hand, 

all other decomposition levels of the accelerations (i.e., up to the fourth level) can be used as 

the original signal alternative for design and optimization purposes. 

 

 
Figure 2. The acceleration response spectrum of the ElCentro earthquake for 5 % damping ratio 
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The mean percentage difference between each decomposition level and the original signal is 

calculated in the small dams to study these types of dams. The results are shown in Table 3. The 

term 'Mpd' stands for Mean Percentage Difference, and the numbers one to five show the 

corresponding decomposition level. Analyzing the table reflects that the first three levels have a 

slight difference (under 5 percent), and the remaining levels (i.e., four and five) have more than 

50 percent disparity. 

 
Table 3: The mean response difference percentage for the small dams (0.22-0.318 sec) 

Decomposition level Value 

Mpd1 (%) 0.03 

Mpd2 (%) 0.50 

Mpd3 (%) 2.93 

Mpd4 (%) 57.25 

Mpd5 (%) 93.47 

 

A similar analysis is performed for the medium dams, and the results are shown in Table 4. 

In this type of dam, the results follow a similar pattern in the first three levels, and their 

percentage differences are under 5 percent. However, the measures of the fourth and fifth 

levels are less than the corresponding values for the small dams. 

 
Table 4: The mean response difference percentage for the median dams (0.318-0.633 sec) 

Decomposition level Value 

Mpd1 (%) 0.06 

Mpd2 (%) 0.19 

Mpd3 (%) 1.78 

Mpd4 (%) 13.22 

Mpd5 (%) 78.01 

 

This process has a different result for large dams, which is shown in Table 5. Four 

decomposition levels have a percentage difference of less than 10 percent and can be 

replaced for optimization and design. However, the fifth level is not suitable due to its 

considerable disparity. 

Comparing these dams reflects that large dams have more flexibility and adaptability 

with the decomposition levels of accelerations. 

 
Table 5: The mean response difference percentage for the large dams (>0.633 sec) 

Decomposition level Value 

Mpd1 (%) 0.06 

Mpd2 (%) 0.20 

Mpd3 (%) 0.31 

Mpd4 (%) 1.36 

Mpd5 (%) 8.65 

 

The percentage difference of each point between the decomposition level and the main 
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one is computed at the next step. This can represent a more in-depth analysis to reach the 

optimum alternative level as the primary function. The term 'pd'  indicates the percentage 

difference, and the following number represents the decomposition level. 

As shown in Fig. 3, the percentage difference in the short and medium dams is 

appropriate up to the third level, and its value is under 10 percent. In the large dams, the 

maximum value of the difference is 8.9% which is for the fourth level of decomposition. It 

shows that this decomposition level is suitable. 

 

 
Figure 3. Percentage error for a point-by-point comparison with the original signal  

 

Here, the percentage of cumulative difference for each level of decomposition is made to 

test the accuracy of the previous two steps (see Fig. 4). The term 't0' is a demonstrator of the 

first level, which sum with zero. The term 't1' results from the cumulative sum of 't0' with 

the percentage differences at level 2, and subsequently, 't2' is the result of the cumulative 

sum of 't1' with the percentage difference at level 3. 

There are four horizontal lines in the graph to control the maximum error limit in the 

value of cumulative differences. These lines are 10, 20, 30, and 40 percent, respectively. For 

instance, graph "t2" shows the cumulative errors of the three decomposed levels. If every 

level has an error of less than 10 percent, the results should be less than 30 percent. Being 

less than 10 percent of each level can be monitored by Fig. 4. It shows that the error 

percentage is suitable up to the third level for small and medium dams. On the other hand, 

decomposition levels are suitable up to the fourth level in the large dams. 

 

 
Figure 4. The percentage of cumulative error 



OPTIMUM LEVEL OF DISCRETE WAVELET DECOMPOSITION FOR DYNAMIC … 

 

639 

4.2 Velocity-period  

The ground velocity parameter has a close correlation with the intensity of the damage. It is 

also related to the energy transmitted to structures. Therefore, the velocity-period response 

spectrum of the ElCentro earthquake is studied here. Fig. 5 shows the velocity response 

spectrum for five levels of decomposition with the original one.  

Fig. 5 is similar to Fig. 2 for different dams (i.e., small, medium, and large dams) and 

response spectrum (i.e., R1, R2, R3, R4, R5, Rx).  

As the graph shows, the first three levels of decomposition can replace the primary 

response spectrum. This is because of the slight and acceptable difference between the 

results in small and medium dams. It can be concluded that the fourth level of 

decomposition cannot obtain purposes due to breaking the maximum difference limitation 

when compared with the acceleration-period curve (see Figs. 2 and 5).  

 

 
Figure 5. The velocity response spectrum of the ElCentro earthquake for 5 % damping ratio 

 

The mean percentage difference between the decomposition level and the original signal 

in the second level is calculated for the small dams. The following results are shown in 

Table 6. From the results, it is clear that the first three levels have a slight difference (under 

6 percent), and the remaining levels (i.e., fourth and fifth) have more than 50 percent 

disparity, which is not applicable. 

 
Table 6: The mean response difference percentage for the small dams (0.22-0.318 sec) 

Velocity-Period Value 

Mpd1 (%) 0.25 

Mpd2 (%) 2.37 

Mpd3 (%) 5.02 

Mpd4 (%) 62.18 

Mpd5 (%) 97.62 

 

The same analysis is performed for the medium dam, and the results are computed (see 

Table 7). In this type of dam, the results follow a similar pattern in the first three levels, and 

their percentage differences are under 6 percent. This amount is less than the corresponding 

values for the small dams. For these two dam types, the quantities are more than 10 percent 
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in the fourth and fifth levels of decomposition (23.04 and 83.06, respectively), which cannot 

be an appropriate option. 
 

Table 7: The mean response difference percentage for the median dams (0.318-0.633 sec) 

Velocity-Period Value 

Mpd1 (%) 0.27 

Mpd2 (%) 1.37 

Mpd3 (%) 5.91 

Mpd4 (%) 23.04 

Mpd5 (%) 83.06 

 

This process has a different result for large dams, which is shown in Table 8. Three 

decomposition levels have a percentage difference of less than 10 percent and can be 

replaced for optimization and design. However, the last two levels (fourth and fifth) are not 

suitable due to considerable disparity. 

Comparing these types of dams reflect the fact that there is a similar pattern of 

differences in all types, and velocity has less flexibility and adaptability than acceleration. 

 

Table 8: The mean response difference percentage for the large dams (>0.633 sec) 

Velocity-Period Value 

Mpd1 (%) 0.22 

Mpd2 (%) 0.50 

Mpd3 (%) 2.43 

Mpd4 (%) 10.93 

Mpd5 (%) 22.10 

 

At the next step, the percentage difference of each point between the decomposition level 

and the main one is shown in Fig. 6. It is clear from Fig. 6 that third levels of decomposition 

are less than the maximum error limit (the red horizontal line) in the small and medium dam. 

In comparison, the large dam has four acceptable levels under 10 percent (red horizontal line). 

 

 
Figure 6. Percentage error for a point-by-point comparison with the original signal  
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Here, the percentage of cumulative difference for each level of decomposition is made to 

test the accuracy of the previous two steps (see Fig. 7). There are four horizontal lines in the 

graph to control the maximum error limit in the value of cumulative differences. These lines 

are 10, 20, 30, and 40 percent, respectively. For instance, graph "t2" shows the cumulative 

errors of the three decomposed levels. If every level has an error of less than 10 percent, the 

results should be less than 30 percent. Being less than 10 percent of each level can be 

monitored by Fig. 7. It shows that the error percentage is suitable up to the third level for 

small and medium dams. On the other hand, decomposition levels are suitable up to the 

fourth level in the large dams. 

 

 
Figure 7. The percentage of cumulative error 

 

4.2 Displacement-period  

Since accelerations do not control structural damage during earthquakes, damage detection 

can be limited more effectively by monitoring displacements. For this purpose, the 

displacement-period response spectrum of the ElCentro earthquake is computed (see Fig. 8).  

Fig. 8 is similar to Fig. 2 for different dams (i.e., small, medium, and large dams) and 

response spectrum (i.e., R1, R2, R3, R4, R5, Rx).  

As the graph shows, the first three levels of decomposition can replace the primary 

response spectrum. This is because of the slight and acceptable difference between the 

results in small and medium dams. It can be concluded that the fourth level of 

decomposition cannot obtain purposes due to breaking the maximum difference limitation 

when compared with the acceleration-period curve (see Figs. 2 and 8).  
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Figure 8. The displacement response spectrum of the ElCentro earthquake for 5 % damping ratio 

 

The mean percentage discrepancy between each decomposition level and the original 

signal is calculated for the small dams (see Tabl 9). From the results, it is clear that the first 

three levels have a small difference (under 3 percent), and the remaining levels (i.e., fourth 

and fifth) have a noticeable disparity, which is not acceptable. 

 
Table 9: The mean response difference percentage for the small dams (0.22-0.318 sec) 

Displacement-Period Value 

Mpd1 (%) 0.08 

Mpd2 (%) 0.6 

Mpd3 (%) 2.54 

Mpd4 (%) 47.15 

Mpd5 (%) 92.40 

 

The identical analysis is performed for the medium dams, and the results are computed 

and shown in Table 10. In this type of dam, the results follow a similar pattern in the first 

three levels, and their percentage differences are under 2 percent. This amount is less than 

the corresponding values for the small dams in the fourth and fifth levels.  These values are 

more than 10 percent for these two types of dam (i.e., 12.22 and 75.52, respectively), which 

is not a good option. 

 
Table 10: The mean response difference percentage for the median dams (0.318-0.633 sec) 

Displacement-Period Value 

Mpd1 (%) 0.08 

Mpd2 (%) 0.21 

Mpd3 (%) 1.65 

Mpd4 (%) 12.22 

Mpd5 (%) 75.52 

 

This process has a different result for large dams, which is shown in Table 11. All 
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decomposition levels have a percentage difference of less than 10 percent and can be 

replaced for optimization and design.  

Comparing these dams reflects that large dams have complete flexibility and adaptability 

with the decomposition of acceleration. 

At the next step, the percentage difference of each point between the decomposition level 

and the main one is found. Four out of five levels have an error of less than 10 percent, and 

the fifth level has an error above the maximum error value. 

 

Table 11: The mean response difference percentage for the large dams (>0.633 sec) 

Displacement-Period Value 

Mpd1 (%) 0.8 

Mpd2 (%) 0.11 

Mpd3 (%) 0.17 

Mpd4 (%) 1.09 

Mpd5 (%) 7.92 

 

 
Figure 9. Percentage error for a point-by-point comparison with the original signal 

 

Here, the percentage of cumulative difference for each level of decomposition is made to 

test the accuracy of the previous two steps (see Fig. 10). There are four horizontal lines in 

the graph to control the maximum error limit in the value of cumulative differences. These 

lines are 10, 20, 30, and 40 percent, respectively. For instance, graph "t3" shows the 

cumulative errors of the four decomposed levels. If every level has an error of less than 10 

percent, the results should be less than 40 percent. Being less than 10 percent of each level 

can be monitored by Fig. 10. It shows that the error percentage is suitable up to the third 

level for small and medium dams. On the other hand, decomposition levels are suitable up to 

the fourth level in the large dams. 

 



S. Shabankhah, A. Heidari and R. Kamgar 

 

644 

 
Figure 10. The percentage of cumulative error 

 

 

5. CONCLUSIONS 
 

The Strong Ground Motion records act as the input data for seismic analysis of structures. 

Since this data has errors caused by noise, wavelet transform decomposes noise and gives a 

more accurate examination of the signal. The function of the wavelet transform is to 

eliminate the noise from the signal, decrease the time of the calculation, and produce results 

closer to real ones. 

The following results are obtained for the small, medium, and large dams with 5 percent 

damping ratio by investigation and analysis of some earthquakes, as well as comparison of 

primary earthquake response spectrum with response spectrum of decomposed levels in the 

domain of acceleration-time, velocity-time, displacement-time: 

1. The difference between the acceleration response spectrum obtained by the main 

earthquake and the decomposed ones is less than ten for up to the third level of 

decomposition in the small and medium dams. This is valid up to the fourth level of 

decomposition for the large dams. 

2. The difference between the velocity response spectrum obtained by the main earthquake 

and the decomposed ones is less than ten for up to the third level of decomposition in the 

small and medium dams. This is valid up to the fourth level of decomposition for the 

large dams. 

3. The difference between the displacement response spectrum obtained by the main 

earthquake and the decomposed ones is less than ten for up to the third level of 

decomposition in the small and medium dams. This is valid up to the fourth level of 

decomposition for the large dams. 

4. Large dams have more adaptability with decomposed levels of accelerations. They have 

fewer errors than small and medium dams. 

5. Median dams have more adaptability with decomposed levels of accelerations. They have 

fewer errors than small dams. 

This approach is taken for the study of the response spectrum of other structures. It helps 

the designer have an optimum design based on alternating the optimum level of 
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decomposition with the primary earthquake. 
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